
Programmatically Interpretable Reinforcement Learning in a
Robotics Domain

CS 703 Fall 2020

Salvatore Skare
University Wisconsin — Madison
Department of Computer Science

sskare@wisc.edu

ABSTRACT
In 2018, Verma et al. published a paper titled, “Programmatically
Interpretable Reinforcement Learning”, where they presented a
program synthesis technique for solving reinforcement learning
(RL) problems. A small functional language is introduced. Using
deep reinforcement learning (DRL), solutions to a RL problem in
the form of a program are synthesized. In the paper, this method of
solving RL problems was applied to several test problems, including
driving a virtual car through a track. This research investigates a
real-world robotics application of this RL method. Learning from
real data can often have different challenges than learning in a
simulated environment. To test the efficacy of PIRL in a real-world
robotics domain, an experiment was devised. The experiment is
based on an early DRL paper published in 2003 from researchers
at Oita University, Japan. In their experiment, they built a small
robot with a CCD monochrome camera and four infrared distance
sensors providing inputs to an actor-critic DRL model. The robot
operated in a 70cm square area, and it’s goal was to push a 7cm by
3cm box. This experiment was recreated using a custom built robot,
training a DRL agent, then synthesizing a program using PIRL. The
resulting program was roughly as effective at locating and pushing
the box as the DRL agent.

1 INTRODUCTION / MOTIVATION
Deep Reinforcement Learning (DRL), which is reinforcement learn-
ing combined with neural networks, has been used to successfully
allow robots to learn to perform tasks with no prior task knowledge,
and no guidance from humans. In recent years, such tasks have
included moving a three-jointed robotic arm to a target using only
raw image data [4], and a quadrupedal robot learning to walk [1].
One issue with DRL is that the learned policy is a set of neural
network weights, which are difficult for humans to interpret. Since
it is often undesirable for a robot to execute an effectively unknown
black-box policy, this aspect of DRL is less than ideal.

One way to generate human-readable policies is through pro-
gram synthesis. In 2018, Verma et al. published “Programmati-
cally Interpretable Reinforcement Learning”, where they describe
a method for synthesizing programs as policies for reinforcement
learning agents [3]. One of the key insight of Programmatically In-
terpretable Reinforcement Learning (PIRL), is that trying to search
for a program that optimizes the value from the reward is difficult
because these reward functions often don’t return a positive value
until some objective is achieved, which makes it difficult to evaluate
accurately over a single time-step. Instead of trying to maximize
the reward function directly, PIRL instead relies on a pre-trained

DRL model, which is used as a policy oracle. The program search
then attempts to minimize the error between the output from the
neural oracle and the synthesized program when evaluated on the
same input.

The authors of the PIRL paper tested their method in several
simulated environments, including the digital car racing simulator
TORCS. The synthesized programs performed on-par with the neu-
ral policy and were human-readable. However, the PIRL synthesizer
designed by Verma et al. was only tested in a virtual environment
on symbolic inputs. For example, one of the most used inputs in
the program synthesized for the TORCS track was the distance the
virtual car was from the center of the track. In a robotics applica-
tion that operates on perceptual data, no such data are available. In
their conclusion the authors state that testing PIRL on real-world
perceptual inputs is a logical next step for the research.

2 METHODS
To evaluate PIRL in a robotics domain, an existing DRL robotics ex-
periment was recreated. The experiment chosen was performed in
2003 at Oita University, Japan [2]. In this experiment, a two-wheeled
Khepera robot was equipped with a camera and 4 IR distance sen-
sors. The goal of this experiment was to see if the robot, running
a Deep Actor-Critic Reinforcement Learning agent, could learn to
locate and push a box. Each episode lasted for either 50 time-steps,
until the robot had pushed the box for 10 consecutive time-steps, or
until the box was no longer visible to the robot. When the robot was
pushing the box, as determined by the distance sensors, and both
motors were moving forwards, the agent received a small reward
of 0.018.

This experiment in particular was chosen for several reasons.
First, it is simple to re-create the DRL agent used in the original
experiment using modern DRL tools. Secondly, the objective to be
learned is simple enough to be tractable, but still involves enough
complexities to challenge PIRL on perceptual inputs. Specifically,
the main challenging conditions under which PIRL has not previ-
ously been tested are:

(1) The input space is large and perceptual
(2) Inputs to the robot contain noise and are not always accurate
(3) Actions taken by the agent are not always successful (e.g.

wheels can slip)

To recreate the experiment, first a two wheeled robot was con-
structed. This robot featured three ultrasonic distance sensors fac-
ing forwards, as well as a forward facing camera situated in a way
similar to the robot in the original experiment. Next, an area of
120cm x 120cm was surrounded by a wall constructed of white card

Salvatore Skare

stock paper 10cm tall. A 10cm x 4cm x 4cm box was also constructed
out of black card stock paper. The area was lit from directly above
by an LED light. It should be noted that the dimensions of this area
were increased in order to maintain the same scale with the robot
as the original experiment had with the smaller Khepera robot.

Figure 1: The robot that was constructed for this research.

Next, the DRL agent used in the original paper was implemented
as closely to the original as possible. At each time step, an image
was captured from the front-facing camera, converted to greyscale,
and downscaled 5 times smaller than the original image dimen-
sions of 640 x 480 pixels. Readings from each distance sensor were
also collected and normalized. The image was flattened to a single
dimension, and normalized as well. Both arrays were then concate-
nated, and this final array was passed to the RL agent as the input
state. Because the camera captures more data than the camera used
in the original experiment, the neural network was increased in
size from the original as well, so that it had two hidden layers, of
sizes 1024 and 128. Like in the original paper, the actor consisted
of two output neurons, one for each motor, and shared the same
hidden layers with the critic output neuron.

Much like in the original experiment, a small random value
drawn from a uniform distribution in order to drive exploration
during early learning. Unlike in the original paper, these random
values were constrained to only positive values, in order to bias the
motors towards going forwards to increase the rate at which the
robot learned the task. In addition, the weights of the input layer
of the neural network were initialized to a random value drawn
from a uniform distribution in the range [0, 1]. The weights of the
hidden layers were initialized to zero. The same temporal difference
error function given in [2] was used for this DRL agent.

For the PIRL agent, a functional domain specific language was
needed for program synthesis. The language created for this exper-
iment had three data-types: int, float, and array. Arrays consisted
only of floating point numbers. Operations for this language con-
sisted of a subset of NumPy operations, as well as array slices. The
input array was the only instance of an array that synthesized pro-
grams could access. Constant values weren’t synthesized directly,
rather the synthesized program representations contained symbolic
constants, which were replaced with actual values by optimizing for

values that minimized the distance between the sum of the differ-
ence between output of the program on all inputs in the history, and
the output from the neural policy oracle on the same inputs. The
optimization method used in [3] was Bayesian Optimization, this
research instead choose to use a Tree-structured Parzen Estimator
as a drop-in replacement. This was done because the implementa-
tion of the Tree-structured Parzen Estimator used was faster and
more stable than any off-the-shelf Bayesian Optimization software
available for python.

⟨int⟩ ::= IntConstant

⟨float⟩ ::= FloatConstant
| ⟨array⟩ ‘.’ ⟨floatOp⟩ ‘()’
| ⟨array⟩ ‘[’ ⟨int⟩ ‘]’

⟨array⟩ ::= Input
| ⟨array⟩ ‘.’ ⟨arrayOp⟩ ‘(’ ⟨float⟩ ‘)’
| ⟨array⟩ ‘[’ ⟨int⟩ ‘:’ ⟨int⟩ ‘]’
| ⟨array⟩ ‘[’ ⟨int⟩ ‘:’ ⟨int⟩ ‘:’ ⟨int⟩ ‘]’

⟨floatOp⟩ ::= ‘max’ | ‘argmax’ | ‘min’ | ‘argmin’ | ‘ptp’ | ‘sum’ | ‘all’
| ‘any’

⟨arrayOp⟩ ::= ‘__lt__’ | ‘__gt__’ | ‘__add__’ | ‘__mul__’

Figure 2: Grammar for the robot DSL.

The program synthesis algorithm for PIRL, which the original
authors refer to as “Neurally Directed Program Search” (NDPS),
reduces the search space of possible programs by requiring a pro-
gram sketch, which they formalize as a set of allowed programs
under the sketch conditions. For this application of NDPS, a sketch
was provided as a string containing a valid python expression, with
holes to be filled by the synthesizer represented as '{}'. Another
restriction on valid programs was that holes were only filled with
floats. This restriction made it possible to constrain the output of
the synthesized programs to arrays of length 2, the same output
format that the DRL agent had, by providing a sketch of the right
shape. These sketches were evaluated by serializing the synthe-
sized code for each hole to a string containing the representative
python expression, replacing the holes in the sketch string with
these strings, then passing the result to eval().

For program search, an enumerative approach was chosen. The
NDPS algorithm requires several functions that are implementation
specific to be implemented. The first of these functions, create_-
histories, was implemented by running the DRL agent for one
episode, and returning a list of input/output pairs as tuples. For
the initialize function, all programs of size 𝑁 are enumerated,
where 𝑁 is a user supplied integer that is greater than or equal to
the number of holes in the sketch. For the experiments presented
in this paper, 𝑁 was chosen as 6. After this set of programs is
synthesized, the programs are evaluated on all the inputs in the set
of histories. The error for each potential program is computed as
the sum of the distance between the output of the program and the
saved output from the DRL agent for each example in the set of
histories. The initialize function returns the potential program
with the lowest error.

Programmatically Interpretable Reinforcement Learning in a Robotics Domain

The neighborhood_pool function is supposed to return pro-
grams similar to the current candidate program. For this implemen-
tation, similar programs are defined as programs where one hole
has been replaced with a float that is one size larger than the previ-
ous float. This method of neighborhood search is simple, as well as
having the benefit of prioritizing shorter programs automatically.
Lastly, the functionality of update_histories is described by the
authors of [3] as “heuristically picks interesting inputs in the tra-
jectory of the learned program and then obtains the corresponding
actions from the oracle for those inputs”. For this implementation,
the heuristic used to decide to add an input was to compute the
distance between the input and all inputs in the set of histories, and
if each distance was above a given threshold, to add the input to
the histories set, as well as the DRL agent’s output on the input.

To evaluate the efficacy of PIRL in this problem domain, the DRL
agent was first left to train for 1000 episodes. After each episode
the robot was reset by executing a routine of first moving in a
random direction, then backing away from any objects in front of
the distance sensors, and finally rotating in-place until the box was
located in the image from the camera. Determining if the box was
visible in this step was achieved by using conventional computer-
vision strategies. The image was first binarized, anything above
the white card stock barrier was cropped out, and if an object of
sufficient area is in the resulting image, it is assumed to be the
box. This method of box detection was also used while running
each episode to determine if the box was still visible. If the robot
happened to push the box too close to the edge of the area, it was
moved back to the center via human intervention after the episode
had finished.

After the DRL agent trained for 1000 episodes, a program was
synthesized using the PIRL implantation described. The sketch
given was:

np.array([{}, {}])
.__add__(np.array([{}, {}]).__mul__({}))

When evaluated, this sketch returns an array of two floats, corre-
sponding to left and right motor values. This particular sketch was
used to allow the synthesis to approximate a proportional error cor-
rection, by choosing two initial values for each motor, then adding
a scaled error term to each. The NDPS algorithm runs until the
reward for the current candidate program from a single episode is
less than the reward for a single episode for the previous candidate
program. The previous candidate program is then returned as the
final synthesized program. After each episode using a candidate
program, the robot was reset in an identical fashion as between
episodes with the DRL agent.

The processor on the custom-built program was much more
powerful than the one used in the original experiment, allowing
the DRL agent to be trained on-board the robot. Program synthe-
sis was still to computationally intensive to be done on the robot
in a time efficient, so the synthesis step of the research was run
on an Intel Core i7 processor, clocked at 2.8 GHz. The robot was
remote-controlled by this computer in order to evaluate candidate
programs.

Once both agents had a final policy, they were both tested by
running ten episodes with each, and collecting the reward from
each episode. This gave a metric to compare the performance of

the DRL agent to the performance of the PIRL agent. All code, as
well as the STL file for the robot chassis, are available at https:
//gitlab.com/saljs/cs-703-project/, licensed under the GPL v3.0 free
software license. This repository also contains details on how to
construct the robot used for this research.

3 RESULTS
Although there was only enough time to let the DRL train for 1000
episodes, one-fifth of the training that took place in the original
robot experiment, it was clear that the robot learned how to lo-
cate and move the box from a multitude of different angles and
locations. However due to the reduced episode count, there were
also certain starting positions that the neural policy failed to find
the box for. Because NDPS is dependent on the neural policy as an
oracle of “correct”, the policy synthesized by PIRL is limited by the
performance of the DRL agent.

Qualitatively, it was possible to see that the DRL agent learned
to locate and push the box by observing it during an episode. An
example of this is available at https://youtu.be/lhxO0_aBv6Q. Since
it was also desirable to have quantitative data that show the DRL
agent learned the task, the amount of reward from each episode
was recorded. By plotting these data and adding a trend-line, it is
also possible to see an upward slope over time, also indicating that
the average reward increased as the robot continued to learn.

Figure 3: A logarithmic plot of reward received per episode,
with a linear trend-line.

After the DRL agent was trained, the PIRL agent was used to
synthesize a program policy. After six iterations of the program
search, the following program was returned:

np.array([0.878, 0.381])
.__add__(np.array([0.318, inputs.any()])

.__mul__(inputs.__mul__(inputs[3403])[2870]))

This program looks specifically at two pixels in the input image.
The locations of these pixels highlighted in an example image is
shown in Figure 4. Similar to the DRL agent, qualitative observation
of the robot running the synthesized showed that it was capable
of locating, driving to, and pushing the box from several starting
positions, and fails for others. An example episode of the PIRL agent
is available at https://youtu.be/1ajbrXXjhew.

https://gitlab.com/saljs/cs-703-project/
https://gitlab.com/saljs/cs-703-project/
https://youtu.be/lhxO0_aBv6Q
https://youtu.be/1ajbrXXjhew

Salvatore Skare

Figure 4: An example image from the robot’s camera, with
pixels 3403 and 2870 highlighted in green and red respec-
tively.

The program generated via NDPS and the DRL agent were both
tested by running each final policy for 10 episodes and collecting
statistics on the reward received. These statistics are summarized
in the table below.

Agent Episodes where
box was found

Average reward Average reward
for episodes box
was found

DRL 4 0.0684 0.4
PIRL 4 0.108 0.4

4 DISCUSSION
From the data collected, the NDPS algorithm synthesized a pro-
gram that performed nearly identically well to the neural policy
from the DRL agent. Because the DRL agent didn’t act as a perfect
oracle, the PIRL agent was limited by the performance of the DRL
agent. It is however, extremely promising that the synthesized pro-
gram performed nearly as well as it could possibly could given this
limitation.

The main proposed benefit of PIRL, interpretability of the policy
was not easily apparent in the program synthesized for this appli-
cation. The synthesis did not result in something approximating a
proportional error correcting function as it was expected to. Analyz-
ing the outputted program it is possible to try and determine how
it makes decisions. For most inputs, inputs.any() will evaluate to
1.0, which leaves the two pixels the program looked at specifically.
The program ends up multiplying the value of both pixels together.
It is still unclear how this is helpful towards stabilizing the robot’s
motion toward the box. However, it is still clear from observation
of runs of the program that it does work as expected.

There are three possible explanations for the lack of interpretabil-
ity in the output program. First, because the DRL agent did not have
enough training to find a policy that works for all possible inputs,
it was possible that the neural policy was solving the problem of
locating the box in a sub-optimal heuristic way, which the PIRL
agent then ended up copying. The second possible explanation is
that because the synthesized program is highly dependent on the
given sketch, that a different sketch would have produced much
more readable results. Finally, it is possible, although unlikely, that
the synthesiser came up with a novel, efficient solution that is hard
to understand because it relies on some information or intuition
that isn’t readily apparent.

Synthesis was also attempted on a more detailed sketch with
fewer holes as well. This sketch worked very similarly to the con-
ventional computer vision approach taken to locate the box between
episodes, by binarizing the image, cropping out anything above
the barrier, then locating the center of mass of the black pixels
corresponding to the box. The holes left for synthesis in this sketch
were the threshold value for binarization, and the error correction
scaling factor. Surprisingly, the synthesizer was unable to generate
a viable program under the constraints of this sketch. This is again
most likely because the neural policy was making decisions using a
very different heuristic than proportional error correction, making
it impossible for NDPS to find a program that approximated the
neural policy under this assumption.

Another issue encountered with PIRL in this problem domain
was the stopping condition for NDPS. When the current candidate
program receives less reward than the previous candidate program,
synthesis is stopped and the previous candidate program is returned
as the final synthesized program. This means that if the robot
manages to find and push the box in one episode, but fails to find
the box in the next, synthesis stops. By looking at Figure 3, we can
see that during training of the DRL agent the agent manages to
find the box in early episodes, but misses it most of the time. As the
agent learned more about the task, it became better at finding and
pushing the box, but there were still some starting conditions it
failed under. Since the synthesized candidate programs attempted
to copy the behavior of the DRL agent, there were also starting
conditions under which they failed. If one of these situations was
encountered during synthesis, it could cause the synthesis to end
prematurely.

There exists a simple fix that could be applied to to the NDPS
stopping condition issue. Instead of only evaluating the candidate
programs on only one episode, taking the mean of the reward across
several episodes would give a better representation of the overall
performance. The trade-off to this solution is that it would take

Programmatically Interpretable Reinforcement Learning in a Robotics Domain

longer to run multiple episodes. Compared to the overall time taken
for program synthesis, this would most likely be negligible.

Performance profiling of the synthesis code revealed that the
enumerative program search step was reasonably fast. The process
of finding optimal values for constants took the most time. It took
approximately 6 hours to synthesize a final sketch, most of which
was spent optimizing constants. Without serious modification to
the NDPS algorithm, or a vastly more efficient optimizer, it would
be difficult to gain much of an increase in speed during this step.

There are several other improvements/extensions to this research
that there was not enough time to implement. One obvious improve-
ment that could be made to the program search is to keep track of
the size of arrays after slice operations, and disallow subsequent
operations on these arrays that would cause an out of bounds error.
This would help reduce the search space. The current solution is
to catch out of bound exceptions thrown when the programs are
evaluated and then exclude them from being chosen as the next
candidate program.

Another extension would be to add conditional statements to
the grammar of the DSL. In [3], DSLs with and without condi-
tional statements were used to synthesize programs for the racing
simulator task. The program that included conditional statements
performed significantly better than the one without conditional
statements. It would be very interesting to see if the addition of con-
ditional statements would increase the performance of synthesized
programs for the robotics task as well.

5 CONCLUSION
This research aimed to evaluate the effectiveness of Programmati-
cally Interpretable Reinforcement Learning on a robotics task in-
volving perceptual inputs. This was accomplished by reproducing
a deep reinforcement learning robotics experiment that involved
a two-wheeled robot learning to locate and push a box based on
camera and distance sensor readings. This DRL agent was then used
as a neural policy oracle for Neurally Directed Program Search. The
final program synthesized using this method performed as well as
the DRL agent on the box pushing task. This shows that PIRL is
capable of synthesizing programs that operate on perceptual inputs
in a real-world robotics task.

REFERENCES
[1] Tuomas Haarnoja, Aurick Zhou, Sehoon Ha, Jie Tan, George Tucker, and Sergey

Levine. 2018. Learning towalk via deep reinforcement learning.CoRR, abs/1812.11103.
arXiv: 1812.11103. http://arxiv.org/abs/1812.11103.

[2] K. Shibata and M. Iida. 2003. Acquisition of box pushing by direct-vision-based
reinforcement learning. In SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).
Vol. 3, 2322–2327 Vol.3.

[3] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri. 2018. Programmatically interpretable reinforcement learning.
CoRR, abs/1804.02477. arXiv: 1804.02477. http://arxiv.org/abs/1804.02477.

[4] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter I. Corke.
2015. Towards vision-based deep reinforcement learning for robotic motion
control. CoRR, abs/1511.03791. arXiv: 1511.03791. http://arxiv.org/abs/1511.
03791.

https://arxiv.org/abs/1812.11103
http://arxiv.org/abs/1812.11103
https://arxiv.org/abs/1804.02477
http://arxiv.org/abs/1804.02477
https://arxiv.org/abs/1511.03791
http://arxiv.org/abs/1511.03791
http://arxiv.org/abs/1511.03791

	Abstract
	1 Introduction / Motivation
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion

