Using a Recurrent Neural Network and Articulatory
Synthesis to Accurately Model Speech Output

Salvatore Skare and Allison Sauppé
Computer Science Department
University of Wisconsin—La Crosse

La Crosse, WI 54601
skare.salvato@uwlax.edu

Abstract

The performance of text-to-speech programs is vital to the adoption of emerging tech-
nologies such as virtual assistants and interactive computer systems. However, current
systems leave much to be desired. This research aims to construct a text-to-speech sys-
tem using articulatory synthesis and a recurrent neural network to more accurately model
human speech. Some of the aspects of speech of interest to improve upon are prosodic
components, enunciation, and pleasantness to listen to. Previously, an articulatory synthe-
sis text-to-speech system has not been feasible due to the complexity of such a system. A
human vocal tract simulator must model the frequency and intensity of the glottal sound
wave, as well as the perturbations caused by the vocal tract and nasal pathway. It must
also model how the vocal tract changes in diameter, area and length at multiple locations.
A neural network is well suited to providing these many inputs to a speech synthesizer at
a rapid rate. A recurrent neural network is also capable of responding to context depen-
dent prosodic and linguistic issues. In this research two different methods of articulatory
synthesis were tested with a recurrent neural network to generate the inputs. The results
show that these types of networks are capable of learning how to generate the parameters
for speech.



1 Introduction

Text to speech (TTS) programs are a class of computer program that takes typed text and
outputs it as spoken words. Although programs to turn text into speech output have existed
for decades, with the rising popularity of smartphone assistants and other devices interfaced
with solely via voice, TTS programs are seeing more use than ever. However, even the best
TTS programs produce robotic and choppy sounding speech that still sounds machine-like.
This can affect the way a user interacts with and perceives these programs in a negative
way.

These issues create a barrier to holding long conversations with virtual assistants and suc-
cessfully conveying long sentences and paragraphs with TTS. Creating a TTS system that
can accurately transcribe text as well as being pleasant to listen to would aid in making
spoken communication from computers more user-friendly. This would have applications
such as improved in-car information and entertainment systems, personal digital assistants,
smart devices/Internet of Things, and accessibility services for the blind.

The majority of TTS programs today use concatenative models, translating the text into
individual phonemes and trying to concatenate them in a pleasing way, which can be dif-
ficult for a computer to do. For example, context dependent pronunciations of words like
“project” provide issues for TTS systems (e.g. “working on a project” versus “project-
ing one’s voice”). In recent years, this issue has been tackled using probabilistic heuristic
methods such as Hidden Markov Models, which look at previous and next words to predict
the correct pronunciation. Even more recently is the invention of Google’s WaveNet, which
uses a convolutional neural network to generate audio from phonemes at the sound wave
level [1].

The largest remaining barrier to accurate TTS programs is prosody, which is defined as
“the melody, rhythm, and emphasis of the speech at the perceptual level” [2]. In a paper
from Berkeley Speech Technologies, O’Malley explains how with traditional TTS the lack
of prosody can cause the speech to sound boring, but attempts to add more variation result
in a “foolish-sounding” voice [3].

An alternative to concatenative speech synthesis, articulatory synthesis, provides a way to
mitigate some of these issues. Lemmetty described articulately synthesis as follows:

Articulatory synthesis tries to model the human vocal organs as perfectly as
possible, so it is potentially the most satisfying method to produce high-quality
synthetic speech. On the other hand, it is also one of the most difficult methods
to implement and the computational load is also considerably higher than with
other common methods [2].

Because of the numerous parameters that need to be updated in real-time to produce high-
quality articulatory speech synthesis, an algorithm to do so has not yet been invented.



2 Methods

In this research two methods of producing speech from models of the human vocal system
were tested with a machine learning approach, 1) a vocal synthesizer based on mathemati-
cal models of the vocal system and air flow, and 2) a formant-based synthesizer that instead
uses a series of formant functions applied to an excitation source to produce vocalizations.
Both methods were trained on single phoneme recordings and the LibriSpeech corpus of
speech data. All software written for this research and described as follows is available
online!.

2.1 Vocal Synthesizer

To create the vocal synthesizer, a combination of the LF-model for glottal waves and the
vocal tract model from Story [4] was used. The LF-model simulates the pressure waves
at the human glottis from a set of timing parameters [5]. The glottal wave is created by a
piecewise function, defined as follows:

g(t) = Epe™ sin (wyt),0 <t < T, (Initial phase)
E. —e(t—Te) —e(Te—Te)
g(t) = T e o — e Ve T, <t < T, <T (Return phase)
€lg

The direct synthesis parameters, (E., Ey, o, w, €), are derived from the timing parameters,
listed in Table 1.

Parameter | Definition
Ty | Fundamental period
T. | Ending of the return phase
T, | Duration of the return phase
T, | Instant of glottal closure

Table 1: Timing parameters from the LF-model used to generate glottal wave

Using the linear regression from the transformed LF-model described by Fant, Liljencrants,
and Lin [6] we are able to predict timing parameters for the LF-model from just a wave-
shape parameter, 7,4, and the period, 7j. From these two variables we are able to create the
glottal wave portion of speech. An example of a glottal wave generated by the synthesizer
is shown in Figure 1.

'https://gitlab.com/saljs/rnn-articulatory-tts



Example glottal wave

Intensity

Time (seconds)

Example vocal wave

i i

(i

°
°

Intensity

L
)
»

2.7 28 2.9 3.0 31

Time (seconds)

Figure 1: Top: An example glottal wave produced by the vocal synthesizer. Bottom: An
example of the glottal wave above after being perturbed by the simulated vocal tract.

Figure 2: A 44 section vocal tract representation using the resting diameters given in Ap-
pendix A of Story, 2005 [4]. Each section acts as a resonator perturbing the glottal wave.

In order to produce vocalizations, the glottal wave is perturbed by the vocal tract. This is
achieved using the parametric model described in Story, 2005. This model achieves per-
turbation through a series of tiers: area, length, and nasalization [4]. Each tier describes



changes to a segmented vocal tract (Figure 2) based on control parameters, such as length
change at glottis and lips, position and magnitude of constrictions, and area of nasal cou-
pling. A full list of inputs to the synthesizer is listed in Table 2. The glottal wave is then
sampled through these segments, treating them as a series of resonators. An example of the
resulting wave is pictured in Figure 1.

Input | Definition
t | Time to hold the sound for (seconds)
Fy | Frequency (Hz)
R, | Glottal wave-shape
q1,q2 | Amplitude coefficients
l. | Location of consonant constriction
a. | Area of consonant constriction (cm?)
r. | Range of consonant constriction
s. | Skewing quotient of consonant contraction
m. | Magnitude of consonant contraction
py | Length change at glottal end of vocal tract (cm)
l4 | Center of the length change p,
s | Range of the length change p,
pm | Length change at lips (cm)
l, | Center of the length change p,,
rn | Range of the length change p,,
anp | Cross-sectional area of nasal coupling port (cm?)

Table 2: The list of parameters the synthesizer takes as inputs.

The combined glottal and vocal synthesizer take a set of 17 inputs (Table 2). These inputs
are generated by a recurrent neural network (RNN). The structure of this network is de-
scribed in Figure 3. Each input sequence of text to the RNN was converted into phonemes,
encoded into a one-hot vector, and broken into discrete time-steps of one phoneme each.
At the final layer of the RNN, 17 outputs are generated then become the inputs to the vocal
synthesizer. The synthesizer then outputs a sound wave sampled at 16kHz of between 0
and 60 seconds in length. During the training process, this sound wave is normalized, then
compared to the training sample using a mean squared error metric. This error term is then
backpropagated through the network.



Phonemes

(112)
Dense LSTM Dense
Vocal
network network network Svnthesizer
(200) (50) (17) y

Sound wave
(0-960000)

Figure 3: The recurrent neural network used for the vocal synthesizer. Blocks represent
multiple layers and ovals represent single layers/operations. The output size at each level
is listed in parenthesis.

2.2 Formant Synthesizer

The formant synthesizer, like the vocal synthesizer, has two main components: a source
excitation and a series of perturbations caused by the vocal tract. Unlike the vocal syn-
thesizer, instead of applying perturbations by keeping track of the state of a vocal tract, a
series of formant functions are applied. The benefit of this synthesis method is that it is
computationally much faster then the previous synthesizer. Using linear predictive coding,
the excitation and formant functions can be extracted from a recorded speech sample. The
Speech Signal Processing Toolkit software package was used in this research for this pro-
cess [7]. This means that instead of creating an end-to-end trainable model, a RNN can
be trained to generate these two sequences without having to generate a final sound wave
in order to calculate an error value for backpropagation. This drastically reduces the time
needed to train the model.



Source Excitation

12 4

10 4

0.0 05 10 15 2.0
Time (seconds)

Formants (LPC)

-1.04

0 100 200 300 400
Window

Figure 4: An example of the utterance “Hello world” split into excitation (top) and formant
functions (bottom).

Inputs are provided to the formant synthesizer RNN in the same way as with the vocal
synthesizer. The input layer then feeds to two separate recurrent networks made up of
LSTM cells. The output from these layers are then fed to deconvolutional layers [8], which
serve to identify and extrapolate patterns into output sequences. The excitation output is
one dimensional, but the number of formant functions depends on the selected order (in
this research an order of 25 was used), so the deconvolutional layers that create the formant
functions are two dimensional, with a number of filters equal to the order plus one for the
fundamental formant frequency. The complete network is described in Figure 5.



AN

Figure 5: The recurrent neural network used for the formant synthesizer. Blocks represent
multiple layers. The output size at each level is listed in parenthesis.

LSTM Deconv
network network
(256) (1988x26)

Formant
functions

Phonemes LSTM Deconv g
(112) —| network network Qurge
(256) (160000) excitation

3 Results

When trained on the single phoneme data set, both synthesizers were able to achieve ac-
curacy’s of > 95% compared to source recordings. The formant synthesizer exhibits a
better learning curve, while the vocal synthesizer takes longer to reach 95% accuracy and
oscillates more (Figure 6).

The formant synthesizer outperforms the vocal synthesizer when trained on the LibriSpeech
corpus. The vocal synthesizer was unable to converge to a high level of accuracy, averaging
only about 70%, while the format synthesizer converged to > 99% accuracy.



Articulatory Synthesis Single Phoneme Accuracy
0.9 - b e
0.8
0.7+

06 e
>
g€ 05—
2 04

03 -,:

0.2 -?_‘

01

0

0 100 200 300 400 500 600 700 800 900 1000
Epoch
Formant Synthesis Single Phoneme Accuracy
1
T g - Y T —y

0.99

0.98

0.97
~
g 09
3
=
< 095

0.94

0.93

0.92

0 100 200 300 400 500 600 700 800 900 1000

Epoch

Figure 6: Accuracy of both synthesizers when trained on single phoneme data over time.
The data points are connected on the formant synthesizer plot to better show the trend over
time.

The reason the formant synthesizer outperforms the vocal synthesizer likely has to do with
how error is backpropagated though the network. To speed up the synthesis of sound waves
with the vocal synthesizer, a buffer of 256 samples is returned for every set of inputs. This
makes estimating partial derivatives for each input parameter impossible, so the error is
backpropagated inaccurately. Another version of the synthesizer that produced one sample
at a time was developed and tested, but ended up being prohibitively slow. The formant
synthesizer, using a non-end-to-end trainable network, didn’t suffer from this issue and
was able to learn to produce speech parameters more effectively.

4 Discussion

One of the main limitations of this research was that only a limited number of RNN con-
figurations were evaluated. Future research could attempt to improve these results with
other network configurations. Additionally, using generative neural networks, such as a
generative adversarial network would be another avenue to pursue further [9].

8



In a full TTS system using the formant synthesizer described, the generated excitation and
formant functions would need to be synthesized into a vocal wave. The number of formant
functions used in this research is the minimum needed to produce high quality speech. A
full TTS system might also increase this number.

The results of this research demonstrate that recurrent neural networks are capable of gen-
erating parameters to be used in articulatory speech synthesis. A high-quality articula-
tory synthesis TTS system would have wide ranging benefits in numerous applications and
would serve to create more user-friendly voice interfaces.

5 Acknowledgments

I would like to acknowledge my faculty mentor, Dr. Allison Sauppé, who has helped
me at every step of this research. In addition I would like to thank Dr. Martin Allen
who provided valuable insight and instruction into the inner workings and applications of
neural networks. This research would not have been possible without generous funding
from the Dean’s Distinguished Fellow’s grant from the University of Wisconsin La Crosse
College of Science and Health. Lastly, I would like to thank the University of Wisconsin—
La Crosse Computer Science Department for providing the equipment necessary to perform
this research.



References

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

Aaron van den Oord, Sander Dieleman, Sander Dieleman, et al. WaveNet: A Genera-
tive Model for Raw Audio. Tech. rep. Google DeepMind, London, UK, 2016.

Sami Lemmetty. “Review of Speech Synthesis Technology”. MA thesis. Helinski
University of Technology, 1999. URL: http://research.spa.aalto.fi/
publications/theses/lemmetty_mst/.

M. H. O’Malley. “Text-to-speech conversion technology”. In: Computer 23.8 (1990),
pp- 17-23. 1SSN: 0018-9162. DO1: 10.1109/2.56867.

Brad H. Story. “A parametric model of the vocal tract area function for vowel and
consonant simulation”. In: The Journal of the Acoustical Society of America 117 (Jan.
2005), pp- 3231-3254.p0O1: 10.1121/1.1869752.

G Fant, J Liljencrants, and Qiguang Lin. “A Four-Parameter Model of Glottal Flow”.
In: STL-QPSR 4 (Jan. 1985).

G Fant, J Liljencrants, and Qiguang Lin. “The LF-model revisited. Transformations
and frequency domain analysis”. In: KTH, Speech Transmission Laboratory, Quar-
terly Report 2-3 (Jan. 1995), pp. 119-156.

Satoshi Imai, Takao Kobayashi, and Keiichi Tokuda. Speech Signal Processing Toolkit
(SPTK). http://sp—-tk.sourceforge.net/.

M. D. Zeiler, D. Krishnan, G. W. Taylor, et al. “Deconvolutional networks”. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
June 2010, pp. 2528-2535. DO1: 10.1109/CVPR.2010.5539957.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. “Generative adversarial
nets”. In: Advances in neural information processing systems. 2014, pp. 2672-2680.

10



